REFERENCES
1. Li, X.; Sun, Y.; Xu, J.; et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy. 2019, 4, 690-9.
2. Stanley, P. M.; Ramm, V.; Fischer, R. A.; Warnan, J. Analysis of metal–organic framework-based photosynthetic CO2 reduction. Nat. Synth. 2024, 3, 307-18.
3. Wu, Y. A.; McNulty, I.; Liu, C.; et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy. 2019, 4, 957-68.
4. Gong, E.; Ali, S.; Hiragond, C. B.; et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy. Environ. Sci. 2022, 15, 880-937.
5. Stanley, P. M.; Su, A. Y.; Ramm, V.; et al. Photocatalytic CO2-to-syngas evolution with molecular catalyst metal-organic framework nanozymes. Adv. Mater. 2023, 35, 2207380.
6. Lyu, W.; Liu, Y.; Zhou, J.; et al. Modulating the reaction configuration by breaking the structural symmetry of active sites for efficient photocatalytic reduction of low-concentration CO2. Angew. Chem. Int. Ed. Engl. 2023, 62, e202310733.
7. Zhou, W.; Wang, X.; Zhao, W.; et al. Photocatalytic CO2 reduction to syngas using metallosalen covalent organic frameworks. Nat. Commun. 2023, 14, 6971.
8. Qian, G.; Lyu, W.; Zhao, X.; et al. Efficient photoreduction of diluted CO2 to tunable syngas by Ni-Co dual sites through d-band center manipulation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202210576.
9. Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.
10. Maeda, K. Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light. Adv. Mater. 2019, 31, 1808205.
11. Pan, Q.; Abdellah, M.; Cao, Y.; et al. Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst. Nat. Commun. 2022, 13, 845.
12. Zhou, Y.; Che, F.; Liu, M.; et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974-80.
13. Wang, Y.; Wang, K.; Meng, J.; et al. Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction. Nano. Energy. 2023, 109, 108305.
14. Yan, S.; Peng, C.; Yang, C.; et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem. Int. Ed. Engl. 2021, 60, 25741-5.
15. Lyu, W.; Liu, Y.; Chen, D.; Wang, F.; Li, Y. Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction. Nat. Commun. 2024, 15, 10589.